메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Minjung Kim (Hanyang University) Jieun Han (Hanyang University) Hojin Choi (Hanyang University College of Medicine) Prie Yannick (University of Nantes) Toinon Vigier (University of Nantes) Samuel Bluteau (University Hospital Nantes) Gyu Hyun Kwon (Hanyang University)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2020 대한인간공학회 추계학술대회
발행연도
2020.10
수록면
1 - 5 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective: This study aims to measure working memory and decision-making ability in the enhanced virtual mall environment based on the embodied cognition theory. Background: Various technologies have been emerged to allow more precise measurements of patients" behavioral data. Therefore, we have developed the Virtual Mall environments based on the embodied cognition theory, to provide the possibilities of evaluation indicators other than those given by the traditional neuropsychological tests in the virtual environments. Method: Based on field observation, we developed the self-checkout system to measure the executive functions, and the results of performance were categorized by MET tests. Finally, we evaluated the possible form of clinical programs based on professional comments by the HCI and medical experts. Results: Four HCI experts reviewed eight elements of usability, and five medical experts assessed the potential of this program as a clinical purpose. Conclusion: This suggests that the self-checkout system developed in this study has potential as a clinical program. Application: These results of this study will be useful as a foundational work to create the VR scenarios and VR environment in neuropsychological tests for the measurement of working memory and decision making.

목차

ABSTRACT
1. Introduction
2. Method
4. Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-001580339