메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ikromjanov Kobiljon Komil Ugli (Inje University) Satyabrata Aich (Inje University) Harin Ryu (Inje University) Moon-Il Joo (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2020 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.12 No.1
발행연도
2021.2
수록면
29 - 32 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the population growth day by day, the need of transportation also increases. As the result, there are more accidents on the roads then before. According to the United States National Highway Traffic Safety Administration (NHTSA), the main reason of roadway injuries and deaths is distracted drivers. Driver distraction is a specific type of driver inattention on the road. In this case, a deep learning-based system can detect and distinguish the source of distractions in real-time, to avoid traffic crashes and make better transport safety. In this paper, we try to develop the system using transfer learning methods with ResNet50 model architecture and pre-trained weights, as well as, compare different optimizers to use with transfer learning. Adam, SGD and RMSprop optimizers were used with transfer learning methods to improve accuracy. At the end, the results show that transfer learning on ResNet50 with SGD optimizer is better model compared to Adam and RMSprop models getting 98,4% (492 out of 500) of accuracy on the unseen distracted drivers’ test dataset.

목차

Abstract
I. INTRODUCTION
II. METHODOLGY
III. RESULT AND DISCUSSION
IV. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001552569