메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용찬 (인천대학교) 권용범 (한국생산기술연구원) 이희관 (인천대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제37권 제1호
발행연도
2021.2
수록면
125 - 143 (19page)
DOI
10.5572/KOSAE.2021.37.1.125

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Air quality management is significant to guarantee public health and ecosystem. For the effective control and management of atmospheric environment through different forms of approaches, analyzing of monitoring data and emission inventory should be firstly considered. Air monitoring stations and their real-time data play important roles to understand pollution circumstance around certain region. However, many of atmospheric researchers frequently face difficulties to overview large volumes of monitoring data, because it requires a lot of time and efforts. Local outlier factor (LOF) broadly applied in different research fields is useful data analysis technique to discover particular values have different pattern or/and characteristic in a data group. The authors in this paper has attempted to apply the LOF algorithm to one-year of air quality monitoring data covers the whole Korean territory for suggesting easy way to preliminarily identify the high-level of PM episodes as their occurrence causes i.e. yellow dust, non-yellow dust and domestic wildfire events. As a result, it was effective to figure out particular LOF ranges as the high-level of PM<SUB>2.5</SUB> episodes, because LOF values show comparatively high numbers when concentrations of PM<SUB>2.5</SUB> are rapidly increased or decreased due to LOF algorithm characteristic. The attempt of this research has found the LOF algorithm would be useful to apply as preliminary methodology for understanding which certain episode has been occurred in tremendous data group. Therefore, it would bring further consideration for effectively analyzing the environmental big data in order to establish the air quality management strategy to environmental scientists and policy makers.

목차

Abstract
1. 서론
2. 연구자료 및 방법
3. 이상치 탐지기법 적용 사례
4. 고농도 발생 사례와 LOF를 적용한 탐지
5. 결론 및 시사점
References

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-539-001579884