메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김도엽 (광운대학교) 박민성 (광운대학교) 장주용 (광운대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
79 - 82 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
얼굴 영상으로부터의 사람의 감정을 예측하는 연구는 최근 딥러닝의 발전과 함께 주목받고 있다. 본 연구에서 우리는 연속적인 변수를 사용하여 감정을 표현하는 dimensional model에 기반하여 얼굴 형상으로부터 감정 상태를 나타내는 지표인 valance/arousal(V/A)을 예측하는 딥러닝 네트워크를 제안한다. 그러나 V/A 예측 모델의 학습에 사용되는 기존의 데이터셋들은 데이터 불균형(data imbalance) 문제를 가진다. 이를 해소하기 위해, 우리는 오토인코더 구조를 가지는 얼굴 영상 생성 네트워크를 학습하고, 이로부터 얻어지는 균일한 분포의 데이터로부터 V/A 예측 네트워크를 학습한다. 실험을 통해 우리는 제안하는 얼굴 생성 오토인코더가 in-the-wild 환경의 데이터셋으로부터 임의의 valance, arousal 에 대응하는 얼굴 영상을 성공적으로 생성함을 보인다. 그리고, 이를 통해 학습된 V/A 예측 네트워크가 기존의 under-sampling, over-sampling 방법들과 비교하여 더 높은 인식 성능을 달성함을 보인다. 마지막으로 기존의 방법들과 제안하는 V/A 예측 네트워크의 성능을 정량적으로 비교한다.

목차

요약
1. 서론
2. 제안하는 방법
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482826