메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이은지 (서울대학교) 강이삭 (서울대학교) 김민우 (서울대학교) 박선지 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
72 - 75 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
조립 부품 이미지에 해당하는 3D CAD 모델 매칭 기술은 최근 로봇 조립 기술의 발전으로 필요성이 대두되고 있다. 이미지 기반 3 차원 모델 매칭 연구는 진행되어 왔지만 가구 부품 이미지와는 특성이 다른 RGB 이미지나 스케치 이미지를 다루는 접근들이었다. 딥러닝을 사용하는 스케치 이미지 기반 3 차원 물체 연구에서는 대부분 3 차원 이미지를 다각도에서 렌더링한 view 이미지들에서 feature 를 추출하고 pooling 하여 하나의 feature 를 출력한다. 그러나 기존의 view pooling 방식은 단순한 평균 방식으로, 부품 이미지에 따른 view 를 반영하기에는 한계가 있었다. 따라서 본 논문에서는 조립 부품 이미지 기반 3 차원 물체 검색을 위해 query 부품 이미지에 따라 다른 view 이미지에 집중할 수 있는 방식의 attentional view pooling 을 제안한다. 또한 조립 부품 데이터의 특성 상 class 당 CAD 모델이 하나인 상황이므로 학습 데이터가 터무니없이 부족하여 이를 해결하기 위한 학습 데이터 증강 방법을 제안한다. 실험은 의자 부품 11가지에 대해 진행하였고 이를 통해 제안하는 방식의 성능을 입증하였다.

목차

요약
1. 서론
2. 조립 부품 이미지 기반 3차원 물체 검색 방법
3. 실험 결과 및 분석
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001482806