메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
서상우 (한국과학기술원) 김승현 (한국과학기술원) 고지은 (한국과학기술원) 김창익 (한국과학기술원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2020년도 대한전자공학회 추계학술대회 논문집
발행연도
2020.11
수록면
365 - 368 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Domain generalization aims to generalize a model to a previously unseen domain. Generalizing the model by narrowing the gap between the domains of training data and test data is an essential task for applying the neural network model to reality. In this paper, we adopt meta-dropout technique to domain generalization settings that can perturb the training examples. We parameterize and train noise so that general decision boundaries can be more accurately predicted. Experimental results on the PACS dataset have shown that the proposed method yields superior performance than existing methods.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0