메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김창기 (한국에너지기술연구원) 김현구 (한국에너지기술연구원) 강용혁 (한국에너지기술연구원) 김보영 (한국에너지기술연구원)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제40권 제6호
발행연도
2020.12
수록면
121 - 134 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, satellite-derived solar irradiance data, generated by the Korea Institute of Energy Research, has been opened for public use via the Public Big Data Platform organized by the Ministry of Public Administration and Security. These data are the monthly mean of daily total irradiance for the domain with latitude between 32°N and 40°N and longitude between 124°E and 130°E with a horizontal resolution of 1 km. The purpose of this study is to evaluate the monthly mean of daily total irradiance by comparing it with the ground truth obtained from the Automated Synoptic Observing System (ASOS) in the Korea Meteorological Administration (KMA). For the investigation period, that is, from 2012 to 2019, the average value of the correlation coefficients for all stations is 0.913. In addition, the root mean square error, which is normalized to the observation, is 12.2%, which is larger than that reported in previous studies. The ground observations employed for the evaluation were not performed by data quality control system. In the Daejeon station, in-situ observation from ASOS in KMA is significantly different from the measurement that is controlled by a data quality system, which means that in-situ observation from ASOS in KMA would be dangerous for use in the evaluation. With the solar irradiance controlled by the data quality control system, the root mean square error is reduced from 15.8% to 5.3%. Therefore, it is necessary to examine the in-situ observation via data quality control for the quantitative analysis of satellite-derived solar irradiance.

목차

Abstract
1. 서론
2. 연구자료 및 검증방법
3. 결과
4. 토의
5. 결론
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-563-001444333