메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chang-Lae Kim (Chosun University) Hae-Jin Kim (Gyeongsang National University)
저널정보
한국트라이볼로지학회 Tribology and Lubricants Tribology and Lubricants 제36권 제6호
발행연도
2020.12
수록면
320 - 323 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Thin film coatings are commonly exploited to minimize wear and optimize the frictional behavior of various precision mechanical systems. The enhancement of thin film durability is directly related to the performance maximization of the system. Therefore, a fine approach to analyze the thin film wear behavior is required. Archard’s equation is a representative and well-developed law that defines the wear coefficient, which is the probability of creating wear particles. A ploughing model is a commonly used model to determine the friction force during the abrasive contact. The equations demonstrate that the friction force and wear coefficient are inversely proportional to the hardness of the material. In this study, Archard’s equation and ploughing models are modified with an effective hardness to minimize the gap between the experimental and numerical results. It is noted that the effective hardness is the hardness variation with respect to the penetration depth owing to the substrate effect. The nanoindentation method is utilized to characterize the effective hardness of Cu film. The wear coefficient value considering the effective hardness is more than three times higher than that without considering the effective hardness. The friction force predicted with the effective hardness agreed better with the results obtained directly from the friction force detecting sensor. This outcome is expected to improve the accuracy of friction and wear amount predictions.

목차

Abstract
1. Introduction
2. Research Methods and Results
3. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0