메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김근식 (부산대학교) 배정수 (동서대학교) 차의영 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제12호
발행연도
2020.12
수록면
1,581 - 1,587 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계 학습 분야에 합성 곱 신경망이 대두되면서 이미지 처리 문제를 해결하는 모델은 비약적인 발전을 맞이했다. 하지만 그만큼 요구되는 컴퓨팅 자원 또한 상승하여 일반적인 환경에서 이를 학습해보기는 쉽지 않은 일이다. 주의 집중 기법은 본래 순환 신경망의 기울기 소실 문제를 방지하기 위해 제안된 기법이지만, 이는 합성 곱 신경망의 학습에도 유리한 방향으로 활용될 수 있다. 본 논문에서는 합성 곱 신경망에 주의 집중 기법을 적용하고, 이때의 학습 시간과 성능 차이 비교를 통해 제안하는 방법의 우수성을 입증한다. 제안하는 모델은 YOLO를 기반으로 한 객체 검출에서 주의 집중 기법을 적용하지 않은 모델에 비해 학습 시간, 성능 모두 우수한 것으로 나타났으며, 특히 학습 시간을 현저히 낮출 수 있음을 실험적으로 증명하였다. 또한, 이를 통해 일반 사용자의 기계 학습에 대한 접근성 증대가 기대된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 객체 검출 모델
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001409201