메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현식 (차의과학대학교) 이웅재 (서울여자대학교) 정태경 (세한대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제25권 제6호
발행연도
2020.12
수록면
33 - 45 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 디지털 헬스케어
4. 딥러닝 질병예측 모델
5. 성능 평가
6. 결론
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-001415591