메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은갑 (이화여자대학교)
저널정보
한국SCM학회 한국 SCM 학회지 한국SCM학회지 제20권 제3호
발행연도
2020.12
수록면
55 - 67 (13page)
DOI
10.25052/KSCM.2020.12.20.3.55

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We study a joint end-item production scheduling, production capacity rationing, and order admission for a manufacturing company with component and end-item production facilities. Recently, due to the importance of component marker in the manufacturing industry, the after-sales market expansion, and the increased risk in the component supply chain, the component supply chain management has received an attention from the literature. In this paper, the component production facility operates a make-to-stock production for the internal inventory replenishment and a make-to-order production for the external order from the market, which generates a capacity rationing problem. We presented a Markov decision process model to investigate the impact of end-item production scheduling, production capacity rationing, and component order admission controls on the company’s profit. Numerical study, using the value iteration algorithm, indicates that the component production capacity rationing is heavily affected by all three type of inventory levels, and the optimal admission control tends to accept an incoming component order if the sum of end-product and component inventory levels reaches at a threshold. It also indicates that the optimal end-product production control will be insensitive to the component inventory level beyond its certain value. We numerically compare the performance of the optimal policy and the fixed threshold policy widely used in the production literature. The results show that the performance of the fixed threshold policy will be sensitive to system parameter values and the average percentage performance difference between the two policies will significantly vary.

목차

1. 서론
2. 선행연구
3. 분석 자료 및 분석 방법
4. 최적 정책의 구조
5. 수치 실험
6. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-324-001417515