메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상문 (SDMENC) 최병웅 (국립생태원) 이남주 (경성대학교)
저널정보
응용생태공학회 Ecology and Resilient Infrastructure Ecology and Resilient Infrastructure Vol.7 No.4
발행연도
2020.12
수록면
345 - 352 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 하천범람에 따른 피해를 최소화하기 위해서는 대피를 위한 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 이상호우 발생시 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 인공신경망 모형을 섬강시험유역에 적용하였다. 다중회귀모형 및 인공신경망 모형의 학습에는 섬강시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 발생 가능한 수위를 예측하였다. 모의 결과 인공신경망 수위예측모형의 결정계수는 0.991 - 0.999로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.945 - 0.990로 나타나 인공신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 하천에서 선행시간을 확보한 홍수 예보 구축에 활용할 수 있을 것으로 판단된다.

목차

ABSTRACT
요약
1. 서론
2. 연구대상 지역
3. 분석 기법
4. 결과 및 고찰
5. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0