메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang Won Park (Kangwon National University) Payam Hosseinzadeh Kasani (Kangwon National University Hospital) Na Young Yeo (Hanhwa Hightech) Gab-Jung Kim (Songho University) Se-Jong Yoo (Daejeon Health Institute of Technology) Jin Su Kim (University of Science and Technology (UST))
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.25 No.4
발행연도
2020.12
수록면
587 - 594 (8page)
DOI
10.4283/JMAG.2020.25.4.587

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The radiomics based on positron emission tomography (PET) data and random forest can predict overall survival rate of head and neck squamous cell carcinoma (HNSCC). We used the texture features extracted from PET and clinical information from patients with HNSCC (n = 138). The Spearman"s correlation analysis, Kaplan-Meier log rank test and random forest were used for survival significance and to predict survival rate of patients with HNSCC. Zone Length Non-Uniformity (ZLNU) was defined as a new key radiomics feature to predict survival rate. For stage N2 group, predicted survival rate was 76.2 % and actual survival rate was 73.3%. For stage IVA group, predicted survival rate was 74.7 % and actual survival rate was 73.8 %. The result of this study that applications of <SUP>18</SUP>F-(FDG)-PET images using radiomics features was validated and could be expected to be used as the basis for future research using MRI images with more distinct structures.

목차

1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusion
References

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0