메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yizhen Pan (Hanyang University) Hyunchul Shin (Hanyang University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.6
발행연도
2020.12
수록면
461 - 467 (7page)
DOI
10.5573/IEIESPC.2020.9.6.461

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Single-image de-raining is extremely challenging, because rainy images may contain rain streaks with various shapes, and at differing scales and densities. In this paper, we propose a new connected multi-stream neural network for removing rain streaks. In order to better extract rain streaks under different conditions, we use three dense networks with different kernel sizes that can efficiently capture the rain information at different densities. We show that providing useful additional information helps the network to effectively learn about the rain streaks. To guide the removal of rain streaks, we utilize a high pass filter to generate a rain region feature map, which focuses on the structure of the rain streaks and ignores the background in the image. Experiments illustrate that the proposed method significantly improves the removal of rain streaks in both synthetic images and real-world images.

목차

Abstract
1. Introduction
2. Background
3. Proposed De-raining Method
4. Experimental Results
5. Conclusion
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0