메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Myeong-Ha Hwang (Korea Electric Power Research Institute (KEPRI)) In-Tae Lee (Korea Electric Power Research Institute (KEPRI)) Chang-Hun Chae (Korea Electric Power Research Institute (KEPRI)) Nam-Joon Jung (Korea Electric Power Research Institute (KEPRI))
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제12호
발행연도
2020.12
수록면
1,808 - 1,815 (8page)
DOI
10.5370/KIEE.2020.69.12.1808

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since the advent of deep learning technology, research and development have been conducted in various fields. In particular, deep learning technology related to embedding that vectorizes the similarity between words has been attracting attention in the natural language processing sector. However, this technology has not been applied to the electric power industry, and no corresponding service frameworks have been developed. Moreover, thousands of knowledge documents produced by electric generator operation experts have been collected for about 20 years by Korea Electric Power Corporation, but they have rarely been applied to electric generator operation. Therefore, this report proposes Gen2Vec, a search engine-based framework for operating power plant using deep learning technology. Gen2Vec can be the core engine of the knowledge system for power plant operators and can be used in search and chatbot services for power plant operation programs and new employee education.

목차

Abstract
1. 서론
2. Related Work
3. Proposed Gen2Vec Framework
4. Experiments and Results
5. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-000073462