메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hwiyeon Yoo (Seoul National University) Nuri Kim (Seoul National University) Jeongho Park (Seoul National University) Songhwai Oh (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
883 - 886 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Following a demonstration path without observing exact location of an agent is a challenging navigation problem. Especially, considering the probabilistic transition function of the agent makes the problem hard to solve with an exact action decision, so learning-based approaches have been used to solve this task. For example, a previous method by Kumar and Gupta et al., robust path following network (RPF), is a neural-network-based method using visual memories of the demonstration. Although the RPF shows good performances on the path-following task, it does not consider the efficiency of the visual memory since it requires the entire visual memory of the demonstration. In this paper, we propose a path-following network using sparse memory of the demonstration path that can deal with various sparsity of the visual memory. For each time step, the proposed network makes soft attention on the sparse memory to control the agent. We test the proposed model on the Habitat simulator using MatterPort3D dataset with various sparsity of memory. The experimental results show that the proposed method achieves 81.9% of success rate and 73.7% of SPL on a model with 0.8 memory sparsity, and also the results of the models with other memory sparsity achieve reasonable performances compare to the baseline methods.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. METHOD
4. EXPERIMENTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569352