메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이수일 (목원대학교) 고대식 (목원대학교)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.8 No.3
발행연도
2020.9
수록면
10 - 21 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
부분 방전 현상은 배전반, 트랜스포머, 스위치 기어 등 고압전력기기에서 많이 발생한다. 부분 방전은 절연체의 수명을 단축하고 절연파괴를 가져오게 되고 이로 인해 정전사고 등 대형피해가 발생하게 된다. 부분 방전 현상은 제품 내부에서 발생하는 경우와 표면에서 발생하는 여러 가지 유형을 가지고 있다. 본 논문에서는 부분 방전 현상에 대한 패턴 및 발생할 확률을 예측할 수 있는 예측 모델을 설계하는 것이다. 설계된 모델을 분석하기 위하여 부분 방전 현상을 발생시키는 시뮬레이터를 활용하여 각각의 부분 방전 유형에 대한 학습 데이터를 UHF 센서를 통하여 수집하였다. 본 논문에서 설계된 예측 모델은 딥 러닝 중 CNN을 기반으로 설계를 하였으며 학습을 통하여 모델을 검증하였다. 설계된 모델에 대한 학습을 위하여 5,000개의 훈련데이터를 만들었으며 훈련데이터의 형태는 UHF센서에서 입력되는 3차원의 원시데이터를 2차원 데이터로 전 처리하여 모델에 대한 입력데이터로 사용하였다. 실험결과, 학습을 통하여 설계된 모델에 대한 정확도는 0.9972의 정확도를 갖는 것을 알 수 있었으며 데이터를 2차원 이미지로 만들어 학습한 경우 보다 그레이 스케일 이미지 형태로 만들어 학습한 경우가 제안된 모델에 대해 정확도가 높음을 알 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 부분방전 예측 모델 알고리즘 설계
Ⅲ. 실험 및 고찰
Ⅳ. 결론
Ⅴ. 참고문헌

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001281850