메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chung, Kook-Chae (Korea Institute of Machinery and Materials) Yoo, Jai-Moo (Korea Institute of Machinery and Materials) Ko, Jae-Woong (Korea Institute of Machinery and Materials) Kim, Young-Kuk (Korea Institute of Machinery and Materials) Wang, X.L. (Institute for Superconducting and Electronic materials, Univ. of Wollongong) Dou, S.X. (Institute for Superconducting and Electronic materials, Univ. of Wollongong)
저널정보
한국초전도저온학회 한국초전도·저온공학회논문지 한국초전도·저온공학회논문지 제9권 제2호
발행연도
2007.1
수록면
23 - 26 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The influence of water partial pressure in Metal-organic Deposition (MOD) method was investigated on the texture and the morphology of $YBa_2Cu_3O_{7-x}$ (YBCO) films grown on the buffered metal tapes. The water partial pressure was varied from 4.2% up to 10.0% with the other process variables, such as annealing temperature and oxygen partial pressure, kept constant. In this work, the fluorine-free Y & Cu precursor solution added with Sm was synthesized and coated by the continuous slot-die coating & calcination step. The next annealing step of the YBCO films was done by the reel-to-reel method with the gas flowed vertically down. From the x-ray diffraction analysis, the un-reacted phase like $BaF_2$ peak was found at the water partial pressure of 4.2%, but $BaF_2$ peak intensity is much reduced as the water partial pressure is increased. However, the higher water partial pressure of about 10% in this experiment leads to the poor crystallinity of YBCO films. The morphologies of the YBCO films were not different from each other when the water partial pressure was varied in this work. The maximum critical current density of 3.8MA/$cm^2$ was obtained at the water partial pressure of 6.2% with the annealing temperature of 780$^{\circ}C$ and oxygen partial pressure of 500ppm.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0