메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희근 ([주]글로벌테크) 정용주 (계명대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제26권 제4호
발행연도
2007.1
수록면
144 - 152 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기존의 심음분류를 위한 연구들은 인공신경망을 이용하여 주로 이루어졌다. 그러나 심음신호의 통계적 특성을 분석 한 결과 HMM의 의한 신호모델링이 적합한 것으로 나타났다. 본 연구에서는 다양한 질병을 나타내는 심음신호를 HMM을 이용하여 모델링 하고 인식성능이 심음신호의 클러스터링에 따라서 많이 좌우되는 것을 알 수 있었다. 또한 실제 환경에서의 심음신호는 그 시작과 끝나는 시점이 정해지지 않은 연속신호이다. 따라서 HMM을 이용한 심음분류를 위해서는 연속적인 심음신호로부터 한 사이클의 분할된 심음을 추출할 필요성이 있다. 일반적으로 수동분할은 분할오류를 발생시키며 실시간 심음인식에 적합하지 않으므로 분할과정이 필요치 않는 ergodic형 HMM을 변형하여 사용할 것을 제안하였다. 그리고 제안된 HMM은 연속심음을 이용한 분류실험에서 매우 높은 성능을 보임을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0