메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송근배 (삼성전자) 김석호 (삼성전자)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제26권 제6호
발행연도
2007.1
수록면
259 - 268 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 HMM 기반 통계적인 대역폭 확장(Bandwidth Extension, BWE) 방법의 개선에 대해 다룬다. 이를 위해 우선, HMM 모델 학습을 위한 기존의 Jax의 학습법과 일반적인 Baum-Welch 학습법의 관계를 비교 검토하고, Jax의 학습법의 한계점 및 문제점을 검토한다. 그리고 이를 바탕으로 Baum-Welch학습법을 이용한 새로운 HMM 기반 BWE 방법을 제시한다. 결론적으로, Baum-Welch 학습법은 Jax의 학습법의 일반화된 형태로 볼 수 있으며, 보다 유연하고 적응적인 학습능력을 가진 알고리즘임을 알 수 있다. 따라서 학습 데이터에 대한 보다 정확한 HMM 모델링이 가능하며 아울러, 이와 같이 개선된 HMM 모델을 활용함으로써 BWE 시스템의 성능향상을 가져 올 수 있었다. 실험결과에 의하면, 제시된 새로운 방법이 기존의 Jax의 방법에 비해 실험의 모든 경우에서 우수한 성능을 보임을 알 수 있다. 주어진 실험조건하에서 근제곱평균(root-mean-square, RMS) 로그 스펙트럴 왜곡(Log Spectral Distortion, LSD) 값이 전체적으로 평균 0.52dB 그리고, 최소 0.31dB에서 최대 0.8dB까지 개선되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0