메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Jeong-Min (KT&G Central Research Institute) Jang, Gi-Chul (KT&G Central Research Institute) Kim, Hyo-Keun (KT&G Central Research Institute) Hwang, Geon-Joong (KT&G Central Research Institute)
저널정보
한국연초학회 한국연초학회지 한국연초학회지 제30권 제2호
발행연도
2008.1
수록면
117 - 124 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A solid phase microextraction (SPME) method in combination with gas chromatography/mass spectrometric techniques was used for the extraction and quantification of 12 selected agrochemical residues in tobacco. The parameters such as the type of SPME fiber, adsorption/desorption time and the extraction temperature affecting the precision and accuracy of the SPME method were investigated and optimized. Among three types of fibers investigated, polyacrylate (PA), polydimethylsiloxane (PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB), PDMS fiber was selected for the extractions of the agrochemicals. The SPME device was automated and on-line coupled to a gas chromatograph with a mass spectrometer. Mass spectrometry (MS) was used and two different instruments, a quadrupole MS and triple quadrupole MS-MS mode, were compared. The performances of the two GC-MS instruments were comparable in terms of linearity (in the range of 0.01$\sim$0.5 $\mu$g/mL) and sensitivity (limits of detection were in the low ng/mL range). The triple quadrupole MS-MS instrument gave better precision than that of quadrupole MS system, but generally the relative standard deviations for replicates were acceptable for both instruments (< 15%). The LODs was fully satisfied the requirements of the CORESTA GRL. Recoveries of 12 selected agrochemicals in tobacco yielded more than 80% and reproducibility was found to be better than 10% RSD so that SPME procedure could be applied to the quantitative analysis of agrochemical residues in tobacco.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0