메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
허진 (세종대학교 지구환경과학과) 박민혜 (세종대학교 지구환경과학과)
저널정보
한국물환경학회 수질보전 수질보전 제23권 제4호
발행연도
2007.1
수록면
482 - 489 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Fluorescence properties and carbohydrate content were investigated using ultrafiltrated size fractions of dissolved organic matters (DOM) originated from different sources. The materials included a treated sewage, an algal organic matter, and a soil leachate, all of which are major constituents of dissolved organic matter in a typical urban river. Four different size fractions were separated from the three sources of each DOM. The size distribution demonstrated that a higher molecular weight fraction was more present in soil leachate compared to two other source DOMs. A higher content of carbohydrates was observed in the following order - algal DOM > treated sewage > soil leachate. A wide range of specific UV absorbance was observed from size fractions of a single source DOM, indicating that aromatic carbon structures are heterogeneously distributed within one source of DOM. The structural heterogeneity was the most pronounced for the soil leachate. The fluorescence index ($F_{450}/F_{500}$) of the treated sewage was similar to that (2.0) typically obtained from autochthonous DOM, suggesting that the treated sewage exhibited autochthonous organic matter-like properties. No protein-like fluorescence intensities were observed for all of the soil leachate size fractions whereas they were observed with two other source DOMs. Based upon the fluorescence peak ratios from fluorescence excitation-emission matrix (EEM), two discrimination indices could be suggested to distinguish three different source DOMs. It is expected that the suggested discrimination indices will be useful to predict the sources of DOM in a typical urban river affected by treated sewage.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0