메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gao, Y. (WSP Cantor Seinuk) Spencer, B.F. Jr. (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제3권 제4호
발행연도
2007.1
수록면
455 - 474 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A flexibility-based distributed computing strategy (DCS) for structural health monitoring (SHM) has recently been proposed which is suitable for implementation on a network of densely distributed smart sensors. This approach uses a hierarchical strategy in which adjacent smart sensors are grouped together to form sensor communities. A flexibility-based damage detection method is employed to evaluate the condition of the local elements within the communities by utilizing only locally measured information. The damage detection results in these communities are then communicated with the surrounding communities and sent back to a central station. Structural health monitoring can be done without relying on central data acquisition and processing. The main purpose of this paper is to experimentally verify this flexibility-based DCS approach using wired sensors; such verification is essential prior to implementation on a smart sensor platform. The damage locating vector method that forms foundation of the DCS approach is briefly reviewed, followed by an overview of the DCS approach. This flexibility-based approach is then experimentally verified employing a 5.6 m long three-dimensional truss structure. To simulate damage in the structure, the original truss members are replaced by ones with a reduced cross section. Both single and multiple damage scenarios are studied. Experimental results show that the DCS approach can successfully detect the damage at local elements using only locally measured information.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0