메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Boo, Deok-Hoon (Department of Mathematics Chungnam National University) Park, Chun-Gil (Department of Mathematics Chungnam National University) Wee, Hee-Jung (Department of Mathematics Chungnam National University)
저널정보
충청수학회 충청수학회지 충청수학회지 제17권 제2호
발행연도
2004.1
수록면
169 - 190 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let r, s be nonzero real numbers. Let X, Y be vector spaces. It is shown that if a mapping f : $X{\rightarrow}Y$ satisfies f(0) = 0, and $$sf(\frac{x+y{\pm}z}{r})+f(x)+f(y){\pm}f(z)=sf(\frac{x+y}{r})+sf(\frac{y{\pm}z}{r})+sf(\frac{x{\pm}z}{r})$$, or $$sf(\frac{x+y{\pm}y}{r})+f(x)+f(y){\pm}f(z)=f(x+y)+f(y{\pm}z)+f(x{\pm}z)$$ for all x, y, $z{\in}X$, then there exist an additive mapping A : $X{\rightarrow}Y$ and a quadratic mapping Q : $X{\rightarrow}Y$ such that f(x) = A(x) + Q(x) for all $x{\in}X$. Furthermore, we prove the Cauchy-Rassias stability of the functional equations as given above.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0