메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
오세인 (서일대학 식품영양과) 김옥선 (숙명여자대학교 생활과학대학 식품영양학전공) 장영애 (한국보건산업진흥원)
저널정보
대한영양사협회 대한영양사협회 학술지 대한영양사협회 학술지 제13권 제2호
발행연도
2007.1
수록면
123 - 137 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study was to investigate the current nutritional labeling practices in the processed foods industry. Package labels provide consumers with reliable nutritional information, which has been considered a useful aid for food selection and a potent educational tool for nutrition in a daily life. To assess the nutritional composition labeling and nutritional claims on the food package labels in the Korean market, 2,691 processed foods were purchased from a wholesale market in August, 2004, under the food categories specified in the 2004 Food Code. Nutritional composition labels were found on 674 out of the 2,691 processed foods items. The study findings were as follows. Milk and dairy products showed the highest percentage(56.6%) of nutritional composition labeling among the food categories, while 86.2% of processed foods carried inappropriate types of nutrition labels. The title of nutritional composition labeling was ordered according to the nutritional composition presented on the top part of the box. The regulations method which it indicates was 77.8%. The expression unit of the nutritional composition labeling was per 100g(32.8%) or per OOg (29.4%). Of total processed foods, 83(3.1%) offered nutritional claims in their labels. These claims were divided into two ways: nutrient content claims and nutrient comparative claims. The most frequently used term in nutrient content claims was "contained"(67.2%). "More" or "Plus" were frequently used term in nutrient comparative claims(11.2%). Calcium was the most popular among nutrients claimed by processed foods(34.3%).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0