메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양원경 (국립과학수사연구소 마약분석과) 한은영 (국립과학수사연구소 마약분석) 박용훈 (국립과학수사연구소 마약분석) 임미애 (국립과학수사연구소 마약분석) 정희선 (국립과학수사연구소 마약분석과)
저널정보
대한약학회 약학회지 약학회지 제48권 제3호
발행연도
2004.1
수록면
207 - 212 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An analytic method was developed for the quantitation of $\Delta$$^{9}-$ tetrahydrocannabinol (THC) and 11-nor-9-carboxy THC (THC-COOH) in human hair. After hair samples were pulverized using Freezer Mill, deuterated internal standards were added and digested in 1 N NaOH at $100^{\circ}C$ water bath for 30 min. Digest solutions were extracted by 5 ml hexane:ethyl acetate (90:10) after acidification with acetic acid. The organic phase was evaporated under N 2 and derivatized by BSTFA (with 1% TMCS) at $85^{\circ}C$ for 45 min. The derivatized solution was separated on HP-5MS column ($30m{\times}0.25mm{\times}0.25mm$) and detected using EI-GC-MS with selective ion monitoring mode. The assay of calibration was ranged from 5 to 100 ng/50 mg hair ($r^2$>0.99) for THC and THC-COOH. Within and between-run precision were calculated at 6, 30, 60 ng/50 mg hair with coefficients of variation less than 11%. Within and between run accuracies at the same concentrations were$\pm$14% and $\pm$30% of target for both analytes, respectively. Absolute and relative recovery at 10 and 100 ng were 60∼91%. The method was used to detect and quantify THC and THC-COOH in cannabis abuser's hairs (N = 16) and SRM (N=5, THC 1 ng/mg, NIST). We detected THC and THC-COOH in only one hair sample. In SRM, % accuracy was 93% (range 86∼103%) and precision (% CV) was 8.14. We began to set up a quantitative analysis of THC and THC-COOH using EI-GC-MS. Continuously, we need to modify and develop this method in order to apply for identification in cannanbis users' hair.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0