메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Bo-Hyung (Department of Physiology, Dankook University School of Medicine) Ahn, Kwang-Sung (Department of Nanobiomedical Science, Dankook University) Heo, Soon-Young (Department of Nanobiomedical Science, Dankook University) Shim, Ho-Sup (Department of Nanobiomedical Science, Dankook University)
저널정보
한국동물번식학회 한국수정란이식학회지 한국수정란이식학회지 제27권 제2호
발행연도
2012.1
수록면
113 - 119 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0