메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Baek, Hoh Yoo (Division of Mathematics and Informational Statistics, Wonkwang University) Park, Su Hyang (Department of Informational Statistics, Graduate School, Wonkwang University)
저널정보
조선대학교 기초과학연구원 조선자연과학논문집 조선자연과학논문집 제10권 제1호
발행연도
2017.1
수록면
33 - 39 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p-q{\geq}3)$, $q=rank(P_V)$ with a projection matrix $P_v$ under the quadratic loss, based on a sample $X_1$, $X_2$, ${\cdots}$, $X_n$. We find a James-Stein type decision rule which shrinks towards projection vector when the underlying distribution is that of a variance mixture of normals and when the norm ${\parallel}{\theta}-P_V{\theta}{\parallel}$ is restricted to a known interval, where $P_V$ is an idempotent and projection matrix and rank $(P_V)=q$. In this case, we characterize a minimal complete class within the class of James-Stein type decision rules. We also characterize the subclass of James-Stein type decision rules that dominate the sample mean.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0