메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gaur, Ankita (Department of Mathematics, Jaypee Institute of Information Technology University) Sharma, Bhudev (Department of Mathematics, Jaypee Institute of Information Technology University)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제32권 제3호
발행연도
2014.1
수록면
529 - 537 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The paper introduces a new product of polynomials defined over a field. It is a generalization of the ordinary product with inner polynomial getting non-overlapping segments obtained by multiplying with coefficients and variable with expanding powers. It has been called 'Ordered Power Product' (OPP). Considering two rings of polynomials $R_m[x]=F[x]modulox^m-1$ and $R_n[x]=F[x]modulox^n-1$, over a field F, the paper then considers the newly introduced product of the two polynomial rings. Properties and algebraic structure of the product of two rings of polynomials are studied and it is shown to be a ring. Using the new type of product of polynomials, we define a new product of two cyclic codes and devise a method of getting a cyclic code from the 'ordered power product' of two cyclic codes. Conditions for the OPP of the generators polynomials of component codes, giving a cyclic code are examined. It is shown that OPP cyclic code so obtained is more efficient than the one that can be obtained by Kronecker type of product of the same component codes.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0