메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chakrabarti, A. (Department of Mathematics, Indian Institute of Science) Martha, S.C. (Department of Mathematics, Institute of Technology Ropar)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제29권 제5호
발행연도
2011.1
수록면
1,583 - 1,602 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A special system of partial differential equations (PDEs) occur in a natural way while studying a class of irrotational inviscid fluid flow problems involving infinite channels. Certain aspects of solutions of such PDEs are analyzed in the context of flow problems involving multiple layers of fluids of different constant densities in a channel associated with arbitrary bottom topography. The whole analysis is divided into two parts-part A and part B. In part A the linearized theory is employed along with the standard Fourier analysis to understand such flow problems and physical quantities of interest are derived analytically. In part B, the same set of problems handled in part A are examined in the light of a weakly non-linear theory involving perturbation in terms of a small parameter and it is shown that the original problems can be cast into KdV type of nonlinear PDEs involving the bottom topography occurring in one of the coefficients of these equations. Special cases of bottom topography are worked out in detail and expressions for quantities of physical importance are derived.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0