메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cho, Wooyeong (Department of Electronics Engineering, Kwangwoon University) Kwon, Juwon (Department of Electronics Engineering, Kwangwoon University) Kwon, Soonchu (Graduate School of Smart Convergence, Kwangwoon University) Yoo, Jisang (Department of Electronics Engineering, Kwangwoon University)
저널정보
한국인터넷방송통신학회 International journal of advanced smart convergence International journal of advanced smart convergence 제8권 제3호
발행연도
2019.1
수록면
95 - 101 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, there have been many issues related to text recognition using Tesseract. One of these issues is that the text recognition accuracy is significantly lower for smaller fonts. Tesseract extracts text by creating an outline with direction in the image. By searching the Tesseract database, template matching with characters with similar feature points is used to select the character with the lowest error. Because of the poor text extraction, the recognition accuracy is lowerd. In this paper, we compared text recognition accuracy after applying various super-resolution methods to smaller text images and experimented with how the recognition accuracy varies for various image size. In order to recognize small Korean text images, we have used super-resolution algorithms based on deep learning models such as SRCNN, ESRCNN, DSRCNN, and DCSCN. The dataset for training and testing consisted of Korean-based scanned images. The images was resized from 0.5 times to 0.8 times with 12pt font size. The experiment was performed on x0.5 resized images, and the experimental result showed that DCSCN super-resolution is the most efficient method to reduce precision error rate by 7.8%, and reduce the recall error rate by 8.4%. The experimental results have demonstrated that the accuracy of text recognition for smaller Korean fonts can be improved by adding super-resolution methods to the OCR preprocessing module.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0