메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Vi Truong, Nguyen Phuong (Department of Environmental Engineering, Kongju National University) Shrestha, Rubee koju (Department of Environmental Engineering, Kongju National University) Kim, Tae Hyun (Department of Environmental Engineering, Kongju National University)
저널정보
한국화학공학회 화학공학 화학공학 제53권 제6호
발행연도
2015.1
수록면
682 - 689 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0