메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shin, Hyun-Soo (School of Electrical and Electronic Engineering, Yonsei University) Ahn, Byung-Du (LCD R&D Center, Samsung Electronics Co., Ltd.) Rim, You-Seung (School of Electrical and Electronic Engineering, Yonsei University) Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
저널정보
한국정보디스플레이학회 Journal of information display Journal of information display 제12권 제4호
발행연도
2011.1
수록면
209 - 212 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0