메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
동향자료
저자정보
Shin, Hee-Jae (Department of Mechanical Engineering, Jeonju University) Kwac, Lee-Ku (Department of Carbon and Nano Engineering, Jeonju University) Lee, Min-Sang (Department of Mechanical Engineering, Jeonju University) Kim, Hong-Gun (Department of Mechanical and Automotive Engineering, Jeonju University)
저널정보
한국탄소학회 Carbon letters Carbon letters 제16권 제4호
발행연도
2015.1
수록면
241 - 246 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rapid industrial development in recent times has increased the demand for light-weight materials with high strength and structural integrity. In this context, carbon fiber-reinforced plastic (CFRP) composite materials are being extensively used. However, laminated CFRPs develop faults during impact because CFRPs are composed of mixed carbon fiber and epoxy. Moreover, their fracturing behavior is very complicated and difficult to interpret. In this paper, the effect of the direction of lamination in CFRP on the absorbed impact energy and impact strength were evaluated, including symmetric ply (0°/0°, −15°/+15°, −30°/+30°, −45°/+45°, and −90°/+90°) and asymmetric ply (0°/15°, 0°/30°, 0°/45°, and 0°/90°), through drop-weight impact tests. Further, the thermal properties of the specimens were measured using an infrared camera. Correlations between the absorbed impact energy, impact strength, and thermal properties as determined by the drop-weight impact tests were analyzed. These analyses revealed that the absorbed impact energy of the specimens with asymmetric laminated angles was greater than that of the specimens with symmetric laminated angles. In addition, the asymmetry ply absorbed more impact energy than the symmetric ply. Finally, the absorbed impact energy was inversely proportional to the thermal characteristics of the specimens.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0