메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mendrok, Krzysztof (Department of Robotics and Mechatronics, AGH University of Science and Technology) Wojcicki, Jeremi (Department of Robotics and Mechatronics, AGH University of Science and Technology) Uhl, Tadeusz (Department of Robotics and Mechatronics, AGH University of Science and Technology)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제16권 제6호
발행연도
2015.1
수록면
1,049 - 1,068 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the paper, the authors propose the application of operational deflection shapes (ODS) for the detection of structural changes in technical objects. The ODS matrix is used to formulate the spatial filter that is further used for damage detection as a classical modal filter (Meirovitch and Baruh 1982, Zhang et al. 1990). The advantage of the approach lies in the fact that no modal analysis is required, even on the reference spatial filter formulation and other components apart from structural ones can be filtered (e.g. harmonics of rotational velocity). The proposed methodology was tested experimentally on a laboratory stand, a frame-like structure, excited from two sources: an impact hammer, which provided a wide-band excitation of all modes, and an electro-dynamic shaker, which simulated a harmonic component in the output spectra. The damage detection capabilities of the proposed method were tested by changing the structural properties of the model and comparing the results with the original ones. The quantitative assessment of damage was performed by employing a damage index (DI) calculation. Comparison of the output of the ODS filter and the classical modal filter is also presented and analyzed in the paper. The closing section of the paper describes the verification of the method on a real structure - a road viaduct.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0