메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang, Jun-Feng (School of Civil Engineering, Zhengzhou University) Ge, Yao-Jun (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) Zhao, Lin (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) Chen, Huai (School of Civil Engineering, Zhengzhou University)
저널정보
테크노프레스 Wind & structures Wind & structures 제23권 제4호
발행연도
2016.1
수록면
367 - 383 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The influence mechanism of mean value components, noted as $P_0$, on POD applications for complete random fields $P_C(t)$ and fluctuating random fields $P_F(t)$ are illustrated mathematically. The critical philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of $P_0$, which connect the correlation function matrix of $P_C(t)$ and $P_F(t)$, and their POD results. Then, POD analyses for several different wind pressure fields were presented comparatively as validation. It's inevitable mathematically that the first eigenmode of $P_C(t)$ resembles the distribution of $P_0$ and the first eigenvalue of $P_C(t)$ is close to the energy of $P_0$, due to similarity of the correlation function matrixs of $P_C(t)$ and $P_0$. However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and the following modes represent the fluctuating pressure when $P_C(t)$ are employed in POD application. When $P_C(t)$ are employed, POD results of all modes would be distorted by the mean value components, and it's impossible to identify $P_0$ and $P_F(t)$ separately. Consequently, characteristics of the fluctuating component, which is always the primary concern in wind pressure field analysis, can only be precisely identified with $P_0$ excluded in POD.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0