메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tong, K.H. (Faculty of Civil Engineering, Universiti Teknologi) Bakhary, Norhisham (Faculty of Civil Engineering, Universiti Teknologi) Kueh, A.B.H. (Construction Research Centre, Universiti Teknologi) Yassin, A.Y. Mohd (Faculty of Civil Engineering, Universiti Teknologi)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제13권 제3호
발행연도
2014.1
수록면
389 - 406 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0