메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nguyen, Tuan-Cuong (Department of Ocean Engineering, Pukyong National University) Huynh, Thanh-Canh (Department of Ocean Engineering, Pukyong National University) Yi, Jin-Hak (Coastal and Environmental Engineering Division, Korea Institute of Ocean Science and Technology) Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
저널정보
테크노프레스 Wind & structures Wind & structures 제24권 제4호
발행연도
2017.1
수록면
385 - 403 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0