메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) Fardshad, Ramin Ebrahimi (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University)
저널정보
테크노프레스 Wind & structures Wind & structures 제26권 제4호
발행연도
2018.1
수록면
205 - 214 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0