메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zachry, Brian C. (Wind Science and Engineering Research Center, Texas Tech University) Letchford, Chris W. (Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute) Zuo, Delong (Wind Science and Engineering Research Center, Texas Tech University) Kennedy, Andrew B. (Department of Civil Engineering and Geological Sciences, University of Notre Dame)
저널정보
테크노프레스 Wind & structures Wind & structures 제16권 제2호
발행연도
2013.1
수록면
193 - 211 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents results from a wind tunnel study that examined the drag coefficient and wind flow over an asymmetric wave train immersed in turbulent boundary layer flow. The modeled wavy surface consisted of eight replicas of a statistically-valid hurricane-generated wave, located near the coast in the shoaling wave region. For an aerodynamically rough model surface, the air flow remained attached and a pronounced speed-up region was evident over the wave crest. A wavelength-averaged drag coefficient was determined using the wind profile method, common to both field and laboratory settings. It was found that the drag coefficient was approximately 50% higher than values obtained in deep water hurricane conditions. This study suggests that nearshore wave drag is markedly higher than over deep water waves of similar size, and provides the groundwork for assessing the impact of nearshore wave conditions on storm surge modeling and coastal wind engineering.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0