메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sen, Debarshi (Department of Civil and Environmental Engineering, Rice University) Nagarajaiah, Satish (Department of Civil and Environmental Engineering, Rice University) Gopalakrishnan, S. (Department of Aerospace Engineering, Indian Institute of Science)
저널정보
테크노프레스 Structural monitoring and maintenance Structural monitoring and maintenance 제4권 제4호
발행연도
2017.1
수록면
381 - 396 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves are a popular means to DD owing to their sensitivity to small damages over a substantial length. This typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed approach performs damage detection, localization in beams. In addition, quantification is possible too with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy in detection and localization even with a signal to noise ratio of 25 dB.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0