메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Pagidi, Balachennaiah (Department of Electrical & Electronics Engineering, AITS) Munagala, Suryakalavathi (Department of Electrical & Electronics Engineering) Palukuru, Nagendra (Department of Electrical & Electronics Engineering)
저널정보
테크노프레스 Advances in energy research Advances in energy research 제4권 제4호
발행연도
2016.1
수록면
255 - 274 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0