메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sayed, Mohamed A. (Department of Mechanical Engineering, Faculty of Engineering, Helwan University) Dawood, Osama M. (Department of Mechanical Engineering, Faculty of Engineering, Helwan University) Elsayed, Ayman H. (Department of Powder Technology, Central Metallurgical R&D Institute [CMRDI]) Daoush, Walid R. (Department of Production Technology, Faculty of Industrial Education, Helwan University)
저널정보
테크노프레스 Advances in materials research : AMR Advances in materials research : AMR 제6권 제1호
발행연도
2017.1
수록면
79 - 91 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0