메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abbasnia, Reza (Civil Engineering Department, Iran University of Science and Technology) Nav, Foad Mohajeri (Civil Engineering Department, Iran University of Science and Technology) Usefi, Nima (Civil Engineering Department, Iran University of Science and Technology) Rashidian, Omid (Civil Engineering Department, Iran University of Science and Technology)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제60권 제1호
발행연도
2016.1
수록면
31 - 50 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
During the recent years, resistance mechanisms of reinforced concrete (RC) buildings against progressive collapse are investigated extensively. Although a general agreement is observed about their qualitative behavior in technical literature, there is not such a comprehensive point of view regarding the quantitative methods for predicting collapse resistance of RC members. Therefore, in the present study a simplified theoretical method is developed in order to predict general behavior of RC frames under the column removal scenario. In the introduced method, the robustness of the frame is extracted based on the capacity of the beams. The proposed method expresses ultimate arching and catenary capacities of the beams and also obtains the corresponding vertical displacements. Based on the calculated capacities, the introduced method also provides a quantitative assessment of structural robustness and determines whether or not the collapse occurs. The capability of the method is evaluated using experimental results in the literature. The evaluation study indicates that the proposed theoretical procedure can establish a reliable foundation for progressive collapse assessment of RC frame structures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0