메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Izadpanaha, Mehdi (Department of Civil Engineering, University of Kurdistan) Habibi, AliReza (Department of Civil Engineering, University of Kurdistan)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제56권 제2호
발행연도
2015.1
수록면
169 - 188 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0