메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cavaleri, Liborio (Department of Civil, Environmental, Aerospace and Materials Engineering [DICAM], University of Palermo) Chatzarakis, George E. (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education) Trapani, Fabio Di (Department of Civil, Environmental, Aerospace and Materials Engineering [DICAM], University of Palermo) Douvika, Maria G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) Roinos, Konstantinos (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) Vaxevanidis, Nikolaos M. (Laboratory of Manufacturing Processes & Machine Tools, School of Pedagogical and Technological Education) Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
저널정보
테크노프레스 Advances in materials research : AMR Advances in materials research : AMR 제6권 제2호
발행연도
2017.1
수록면
169 - 184 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0