메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wang, Lihua (School of Aerospace Engineering and Applied Mechanics, Tongji University) Chen, Jiun-Shyan (Civil & Environmental Engineering Department, University of California Los Angeles [UCLA]) Hu, Hsin-Yun (Mathematics Department, Tunghai University)
저널정보
테크노프레스 Interaction and multiscale mechanics Interaction and multiscale mechanics 제2권 제4호
발행연도
2009.1
수록면
333 - 352 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We introduce a radial basis collocation method to solve axially moving beam problems which involve $2^{nd}$ order differentiation in time and $4^{th}$ order differentiation in space. The discrete equation is constructed based on the strong form of the governing equation. The employment of multiquadrics radial basis function allows approximation of higher order derivatives in the strong form. Unlike the other approximation functions used in the meshfree methods, such as the moving least-squares approximation, $4^{th}$ order derivative of multiquadrics radial basis function is straightforward. We also show that the standard weighted boundary collocation approach for imposition of boundary conditions in static problems yields significant errors in the transient problems. This inaccuracy in dynamic problems can be corrected by a statically condensed semi-discrete equation resulting from an exact imposition of boundary conditions. The effectiveness of this approach is examined in the numerical examples.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0