메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mohammadhassani, Mohammad (Department of Civil Engineering, University of Malaya) Nezamabadi-pour, Hossein (Department of Electrical Engineering, Shahid Bahonar University of Kerman) Suhatril, Meldi (Department of Civil Engineering, University of Malaya) Shariati, Mahdi (Department of Civil Engineering, University of Malaya)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제46권 제6호
발행연도
2013.1
수록면
853 - 868 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The comparison of the effectiveness of artificial neural network (ANN) and linear regression (LR) in the prediction of strain in tie section using experimental data from eight high-strength-self-compact-concrete (HSSCC) deep beams are presented here. Prior to the aforementioned, a suitable ANN architecture was identified. The format of the network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of eleven and ten neurons in first and second TRAINLM training function was highly accurate and generated more precise tie strain diagrams compared to classical LR. The ANN's MSE values are 90 times smaller than the LR's. The correlation coefficient value from ANN is 0.9995 which is indicative of a high level of confidence.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0