메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang, Jun-Feng (School of Civil Engineering, Zhengzhou University) Chen, Huai (School of Civil Engineering, Zhengzhou University) Ge, Yao-Jun (Department of Bridge Engineering, Tongji University) Zhao, Lin (Department of Bridge Engineering, Tongji University) Ke, Shi-Tang (Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제49권 제5호
발행연도
2014.1
수록면
619 - 629 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As hyperboloidal cooling towers (HCTs) growing larger and slender, they become more sensitive to gust wind. To improve the dynamic properties of HCTs and to improve the wind resistance capability, stiffening rings have been studied and applied. Although there have been some findings, the influence mechanism of stiffening rings on the dynamic properties is still not fully understood. Based on some fundamental perceptions on the dynamic properties of HCTs and free ring structures, a concept named "participation degree" of stiffening rings was proposed and the influence mechanism on the dynamic properties was illustrated. The "participation degree" is determined by the modal deform amplitude and latitude wave number of stiffening rings. Larger modal deform amplitude and more latitude waves can both result in higher participation degree and more improvement to eigenfrequencies. Also, this concept can explain and associate the pre-existing independent findings.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0