메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Demir, Ahmet (Department of Civil Engineering, Osmaniye Korkut Ata University) Ok, Bahadir (Department of Civil Engineering, Adana Science and Technology University)
저널정보
테크노프레스 Geomechanics & engineering Geomechanics & engineering 제8권 제4호
발행연도
2015.1
수록면
615 - 630 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The use of helical anchors has been extensively beyond their traditional use in the electrical power industry in recent years. They are commonly used in more traditional civil engineering infrastructure applications so that the advantages of rapid installation and immediate loading capability. The majority of the research has been directed toward the tensile uplift behaviour of single anchors (only one plate) by far. However, anchors commonly have more than one plate. Moreover, no thorough numerical and experimental analyses have been performed to determine the ultimate pullout loads of multi-plate anchors. The understanding of behavior of these anchors is unsatisfactory and the existing design methods have shown to be largely inappropriate and inadequate for a framework adopted by engineers. So, a better understanding of helical anchor behavior will lead to increased confidence in design, a wider acceptance as a foundation alternative, and more economic and safer designs. The main aim of this research is to use numerical modeling techniques to better understand multi-plate helical anchor foundation behavior in soft clay soils. Experimental and numerical investigations into the uplift capacity of helical anchor in soft clay have been conducted in this study. A total of 6 laboratory tests were carried out using helical anchor plate with a diameter of 0.05 m. The results of physical and computational studies investigating the uplift response of helical anchors in soft clay show that maximum resistances depend on anchor embedment ratio and anchor spacing ratio S/D. Agreement between uplift capacities from laboratory tests and finite element modelling using PLAXIS is excellent for anchors up to embedment ratios of 6.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0